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Abstract. In this paper we evolve a rule based approach to SLA representation 
and management which allows separating the contractual business logic from 
the application logic and enables automated execution and monitoring of SLA 
specifications. We make use of a set of knowledge representation (KR) con-
cepts and combine adequate logical formalisms in one expressive formal 
framework called ContractLog. 

1   Introduction 

Service Level Management (SLM) and Service Level Agreements (SLAs) are of 
growing commercial interest with a deep impact on the strategic and organisational 
processes as intensified interest in accepted management standards like ITIL1 or the 
new BS150002 shows. Additionally, IT virtualisation and upcoming flexible IT infra-
structures like e.g. new middleware products, storage area networks or grids services 
pave the way for new service oriented business models (e.g. “on-demand”, “pay-per-
use”, “utility computing”) with flexible and more individual contracts. [1] This needs 
new levels of flexibility and automation in SLA management not available with the 
current technology and tools [2, 3]. This paper proposes a rule based representation of 
SLAs using sophisticated, logic-based knowledge representation (KR) concepts as an 
alternative to natural language defined contracts or pure procedural implementations 
in programming languages such as Java or C++. We combine selected adequate logi-
cal formalisms in one expressive framework called ContractLog with which to de-
scribe formal rule based contract specifications which can be automatically monitored 
and executed. The essential advantages of ContractLog are: 
1. Contract rules are separated from the service management application. This allows 

easier maintenance and management and facilitates contract arrangements which 
are adaptable to meet changes to service requirements dynamically with the 
indispensable minimum of service execution disruption at runtime, even possibly 
permitting coexistence of differentiated contract variants.  

                                                           
1  IT Infrastructure Library (ITIL): www.itil.co.uk 
2  BS15000 IT Service Management Standard: www.bs15000.org.uk 
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2. Rules can be automatically linked (rule chaining) and executed by rule engines in 
order to enforce complex business policies and individual and graduated contrac-
tual agreements. 

3. Test-driven validation and verification methods can be applied to determine the 
correctness and completeness of contract specifications against user requirements 
[4] and large rule sets can be automatically checked for consistency. Additionally, 
explanatory reasoning chains provide means for debugging and explanation. [5] 

4. Contract norms like rights and obligations can be enforced and contract violations 
can be (proactively) detected and treated via automated monitoring processes and 
hypothetical reasoning. [5] 

The rest of the paper is structured as follows. In section 2 we define the require-
ments for a logic based rule language capable of representing, monitoring and enforc-
ing service contracts. In section 3 we present an overview of our solution to meet 
these requirements – the ContractLog framework. In section 4 we describe our im-
plementation effort based on the open source rule engine Mandarax and compare our 
rule based approach to common procedural implementations. Further information on 
our implementation and more details on the applied logical formalisms can be found 
in [3, 5, 6] and on our project web site [7]. Finally, in section 6 we conclude this 
paper with a short summary and an outlook on the higher level Rule Based SLA 
language: RBSLA [7].  

2   Requirements 

We analyzed several real world SLAs from different service providers in different 
branches and several commercial tools like e.g. Tivoli SLA, in order to identify the 
problems and to derive the requirements on an adequate, automated SLA representa-
tion language. The two main problems which we found are: 
1. In many companies SLAs are informally described in natural language. This leads 

to simplified SLA rules and many manual processes in management and monitor-
ing of SLAs.  

2. Existing SLM tools with their hard coded application logic and common reference 
models like ITIL are too little automated, flexible and adaptable. 

As a consequence SLA management needs new ways of knowledge representation 
for contractual agreements and new technical solutions for contract monitoring and 
enforcement. Beside basic information about the roles of the parties, the contract life 
time, the agreed services, etc. SLAs contain (business) rules on rights and obligations, 
prices and costs, quality of service (QoS) and service levels, penalties for contract 
violations, termination conditions etc. Automated monitoring and execution of such 
rules requires formalization of the rule syntax. Logic-based rule languages and dedi-
cated rule engines can be used to solve this task [2, 3]. However, SLAs have a num-
ber of requirements regarding an adequate knowledge representation. Figure 1 shows 
the main requirements. For a detailed description of these and further requirements 
not listed here see [6]. 
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3   The ContractLog Framework 

Table 1 summarizes the main concepts used in ContractLog, our solution to the re-
quirements identified in section 2 (see fig. 1). 

1. Rule chaining 
2. Default rules 
3. Rule prioritization 
4. Contract modularization 
5. External data integration 
6. Procedural attachments 
7. OO type system and integration of business objects 
8. Semantic (business) vocabularies and domain descriptions 
9. Situated processing of events and actions 

10. Temporal reasoning on events and their effects 
11. Contract norms on an individual and group level 
12. Verification, validation and conflict resolution 
13. Declarative rule syntax and rule serialization 

Fig. 1. Main requirements on a declarative rule language 

Table 1. Main logic concepts of ContractLog 

Logic Usage 
Derivation rules (horn logic with NaF) Enables deductive reasoning on business rules. 
Event-Condition-Action rules (ECA) Active event detection and situative behaviour by event-

triggered executable actions. 
Event Calculus (temporal reasoning) Temporal reasoning about dynamic systems, e.g. effects 

of events on the contract state.  
Defeasible logic / GCLP (priorities) Default rules and priority relations of rules. Facilitates 

conflict detection and resolution as well as revision/ 
updating and modularity of rules. 

Deontic logic Enables representing rights and obligations as deontic 
contract norms „permission, prohibition, obligation“ and 
norm violations (contrary-to-duty obligations) and excep-
tions (condit. defeasible obligations). 

Description logic  Enables semantic domain descriptions (e.g. contract 
ontologies) to hold rules domain independent. Facilitate 
exchangeability and interpretation. 

Procedural object-oriented logic / procedural attach-
ments  

Procedural attachments integrate object oriented pro-
gramming into declarative rules. Merits the benefits of 
procedural logic (e.g. Java EJBs) and declarative logic 
programming (representing business logic). 

In the following we want to describe the main formalism used in ContractLog. 
More information can be found in [1-3, 5, 6] and on our project site [1]. 

Derivation Rules with Procedural Attachments and External Data Integration 
Derivation rules based on horn logic supplemented with negation as failure (NaF) and 
rule chaining enable a compact representation and a high level of flexibility in auto-
matically combining rules to form complex business policies and graduated contract 
rules [3, 8]. On the other hand procedural logic as used in programming languages is 
highly optimized in solving computational problems - however, with the disadvantage 
that the complete control flow must be implemented. Procedural attachments and the 



212      Adrian Paschke, Martin Bichler, and Jens Dietrich 

use of a typed logic3 offer a clean way of integrating programming languages into 
logic based rule execution paving the way for intelligently accessing or generating 
data for which the highest level of performance is needed and the logical component 
is minimal. This includes accessing external databases using optimized query lan-
guages like SQL to temporarily populate the knowledge base with the needed facts 
for the inference processes at query time. After the query has been answered (using 
backward reasoning) these facts can be discarded from memory and therefore replica-
tion of data is not necessary any more, which is crucial, as in SLA management we 
are facing a knowledge intensive domain which needs flexible data integration from 
multiple rapidly changing data sources, e.g. business data from data warehouses, 
system data from system management tools, process data from work flows, domain 
data from ontologies etc. Additionally, the tight integration with Java enables (re-
)using existing business objects implementations such as EJBs and system manage-
ment tools.  

ECA Rules 
A key feature of a SLA monitoring system is its ability to actively detect and react to 
events and many rules in SLAs are basically Event Condition Action (ECA) rules, 
e.g.: “If the service becomes unavailable (Event) then send a notification message to 
the service administrator (Action)”. We implemented support for active ECA rules in 
our backward reasoning system based on an independent daemon process, which 
monitors all ECA rules by periodically querying the rule base using a thread pool for 
parallel execution of rules. We represent an ECA rule as a derivation rule: 
eca(T,E,C,A). Each term T (time), E (event), C (condition) and A (action) references 
to a further derivation rule which implements the respective functionality of the term. 
The additional term T (time) is introduced to define the monitoring inter-
vals/schedules in order to control monitoring costs for each rule. Example:  

eca(everyMinute, serviceUnavailable, notScheduledMaintanance, sendNotification) 
everyMinute(DT)   … serviceUnavailable(DT)  … notScheduledMaintanance(DT)  … sendNotification(DT)  … 

Rule chaining combining derivation rules can be used to build complex functional-
ities, which can be referenced from several ECA rules. More details on the ECA im-
plementation can be found in [6].  

Event Calculus 
The Event Calculus (EC) [9] is a formalism for temporal reasoning about events and 
their effects on a knowledge system. It defines a model of change in which events 
happen at time-points and initiate and/or terminate time-intervals over which some 
properties (time-varying fluents) of the world hold. We implemented the classical 
logic formulations using horn clauses and made some extensions to the core set of 
axioms to represent derived fluents, delayed effects (e.g. countdowns, validity time of 
norms), continuous changes (e.g. time-based counter) and epistemic knowledge 
(planned events e.g. for hypothetical reasoning) [5, 6]: 

Classical Domain independent predicates/axioms ContractLog Extensions 
happens(E,T) event E happens at time point T valueAt(P,T,X)   parameter P has value X at time point T 

                                                           
3  ContractLog supports typed variables and constants based on the object-oriented type system 

of Java 
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initiates/terminates(E,F,T) event E initiates/terminates fluent F  
holdsAt(F,T)  fluent F holds at time point T 

planned(E,T)    event E is believed to happen at time point T 
occurred(E,T)   event E actually happened 
derivedFluent(F) derived fluent F 

The EC and ECA can be combined and used vice versa, for example fluents (holdsAt) 
can be used in the condition parts of ECA rules or ECA rules can be used to persis-
tently assert detected events to the EC knowledgebase and define e.g. ECA rules with 
post conditions (a.k.a. ECAP rules). The EC enables us to model the effects of events 
on changeable SLA properties (e.g. deontic contract norms describing rights and 
obligations) and to reason about the contract state at certain time points. In addition 
we can define complex state transition rules similar to workflows. This is very useful 
for deontic contract norms, e.g., for representing violations of norms (e.g. violation of 
fulfilling an obligation in a defined period). 

Deontic Logic 
Deontic Logic (DL) studies the logic of normative concepts such as obligation (O), 
permission (P) and prohibition (F). However, classical standard deontic logic (SDL) 
offers only a static picture of the relationships between co-existing norms and does 
not take into account the effects of events on the given norms and dependencies be-
tween norms, e.g. violations of norms. Another limitation is the inability to express 
personalized statements. In real world applications deontic norms refer to an explicit 
concept of an agent. These limitations make it difficult to satisfy the needs of practi-
cal contract management. Therefore, we extended the concepts of DL with a role-
based model and integrated it in our Event Calculus implementation in order to model 
the effects of events on deontic norms and to represent dependencies between deontic 
norms. [5] A deontic norm consists of the normative concept (norm), the subject (S) 
to which the norm pertains, the object (O) on which the action is performed and the 
action (A) itself. We represent a role based deontic norm (Ns,oA) as an EC fluent: 
norm(S, O, A), e.g. inititates(e1, permit(s,o,a),t1). Additionally, we implemented typical 
DL inference axioms in ContractLog, e.g.: Os,oA  Ps,oA: holdsAt(permit(S,O,A),T)  hold-
sAt(oblige(S,O,A),T) or Fs,oA  Ws,oA: holdsAt(waived(S,O,A),T)  holdsAt(forbid(S,O,A),T) etc. and 
additional rules to deal with deontic conflicts, violations of deontic norms and their 
contrary-to-duty paradoxes, e.g. Authorization Conflict: holdsAt(authConflict(S,O,A),T) 

holdsAt(permit(S,O,A),T). holdsAt(forbid(S,O,A),T). The tight combination of the time based 
EC with role based deontic norms enables the definition of institutional power as-
signment rules (e.g. empowerment rules) for creating institutional facts which are 
initiated by a certain event and hold until another event terminates them. Further we 
can define complex dependencies between norms in workflow like settings which 
exactly define the actual contract state and all possible state transitions. In particular 
derived fluents and delayed effects (with trajectories and parameters [5]) offer the 
possibility to define exceptions and violations of contract norms and their consequen-
tial secondary norms e.g., conditional contrary-to-duty (CTD) obligations. A typical 
example which can be found in many SLAs is a primary obligation which must be 
fulfilled in a certain period, but if it is not fulfilled in time, then the norm is violated 
and a certain “reparational” norm is in force, e.g., a secondary obligation to pay a 
penalty or a permission to cancel the contract etc. [5, 6] Example: 

“If the service is unavailable, the SP is obliged to restore it within tdeadline. If the SP fails to restore the service in 
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tdeadline, (violation) the SC is permitted to cancel the contract (consequence).” 
Representation in ContractLog 
initiates(unavailable, oblige(SP, Service, start()),T)                                 // defines the primary obligation initiated by an certain event  
 terminates(available, oblige(SP, Service, start()),T)                              //  defines the event which normally terminates the obligation 
trajectory(oblige(SP,Service,start()),T1,deadline,T2,(T2 - T1))            // defines the period in which the obligation must be fulfilled 
happens(elapsed,T)  valueAt(deadline,T, tdeadline)         // defines the violation event which happens when the deadline is 
reached 
initiates(elapsed, permit(SC, Contract, cancel()),T)                             // initiates the derived permission to cancel the contract 

Remark. DL is plagued by a large number of paradoxes. We are aware of this. 
However, because our solution is based on temporal event logic we often can avoid 
such conflicts, e.g. a situation where a violated obligation and a CTD obligation of 
the violated obligation are true at the same time is avoided by terminating the violated 
obligation so that only the consequences of the violation (CTD obligation) are in 
effect. Other examples are defeasible prima facie obligations (Os,oA) which are subject 
to exceptions (E  Os,o¬A) and lead to contradictions, i.e. Os,o¬A and Os,oA can be 
derived at the same time. We terminate the general obligations in case of an exception 
and initiate the conditional more specific obligation till the end of the exceptional 
situation. After this point the exception norm is terminated and we re-initiate the 
initial “default” obligation. Note that we can also represent norms which hold initially 
via the initially axiom in order to simulate “non-temporal” norms. A third way is to 
represent conflicts as defeasible deontic rules with defined priorities (overrides) 
between conflicting norms, i.e. we weaken the notion of implication in such a way 
that the counterintuitive sentences are no longer derived (see. defeasible logic). 

Defeasible Logic 
We adapt two basic concepts in ContractLog to solve conflicting rules (e.g. conflict-
ing positive and negative information) and to represent rule precedences: Nute’s de-
feasible logic (DfL) [10] and Grosof´s Generalized Courteous Logic Programs 
(GCLP) [11]. There are four kinds of knowledge in DfL: strict rules, defeasible rules, 
defeaters and priority relations. We base our implementation on the meta-program 
found in [12] to translate defeasible theories into logic programs and extended it to 
support priority relations r1>r2: overrides(r1,r2) and conflict relations in order to define 
conflicting rules not just between positive and negative literals, but also between 
arbitrary conflicting literals. Example:   

Rule1 “discount”: All gold customers get 10 percent discount.”  
Rule2 “nodiscount”: Customers who have not paid get no discount.”  
ContractLog DfL: … overrides(discount, nodiscount) … // rule 1 overrides rule 2 

GCLP is based on concepts from DfL. It additionally implements a so called Mutex to 
handle arbitrary conflicting literals. We use DfL to handle conflicting and incomplete 
knowledge and GLCP for prioritisation of rules. A detailed formulation of our im-
plementation can be found in [6]. 

Description Logics 
Inspired by recent approaches to combine description logics and logic programming 
[13, 14] we have implemented support for RDF/RDFS/OWL descriptions to be used 
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in ContractLog rules. At the core of our approach is a mapping from RDF triples 
(constructed from RDF/XML files via a parser) to logical facts: RDF triple:subject predi-
cate object   LP Fact: predicate(subject, object), e.g.: 

 Ca : , i.e., the individual a is an instance of the class C: type(a,C) 
Pba :, >< , i.e., the individual a is related to the individual b via the property P: property(P,a,b) 

On top of these facts we have implemented a rule-based inference layer and a class 
and instance mapping4 [7] to answer typical DL queries (RDFS and OWL Lite/DL 
inference) such as class-instance membership queries, class subsumption queries, 
class hierarchy queries etc. For example: 

RDFS inference examples: 
DC ⊆ , i.e., class C is subclass of class D: type(a, D)  subClassOf(C,D), type(a,C)  
PQ ⊆ , i.e., Q is a subproperty of P: property(Q,a,b)  subPropertyOf(Q,P), property(P,a,b) 

CPT .∀⊆ ,i.e., the range of property P is class C: type(b,C) <-- range(P, C), property(P, a, b) 
CPT `.∀⊆ ,i.e., the domain of property P is class C: type(b,C) <-- range(P, C), property(P, a, b)   etc. 

OWL inference examples: 
DC ≡ , i.e., class C is equivalent to class D:  type(a,C) <-- equivalentClass(C, D), type(a,D) 

    type(a,D) <-- equivalentClass(C, D), type(a,C) 
P + P⊆ i.e., property P is transitive: property(P,a,c)  type(P,"owl:TransitiveProperty"),property(P, a,b),property(P,b,c)     etc. 

This enables reasoning over large scale DL ontologies and it provides access to onto-
logical definitions for vocabulary primitives (e.g. properties, class variables and indi-
vidual constants) to be used in LP rules. In addition to the existing Java type system, 
we allow domain independent logical objects in rules to be typed with external on-
tologies (taxonomical class hierarchies) represented in RDF, RDFS or OWL. 

4   Implementation and Discussion 
We implemented the ContractLog framework based on the backward-reasoning rule 
engine Mandarax [8] and the Prova language extension [15], which provides a Prolog 
related syntax. Mandarax is an open source java-based rule engine for backward rea-
soning derivation rules. It provides a typed logic (typed rule terms) and procedural 
attachments which wrap java methods. This allows combining the benefits of LP and 
object-oriented programming and provides a high level of flexibility and automation. 
It offers the option to restrict the applicability of rules and to control the level of gen-
erality in queries and most importantly it makes possible the desired tight integration 
of Java code into logical rules, e.g. using monitoring functions from existing system 
management tools and delegating computation intensive tasks to Java (e.g. for com-
puting average performance values and service levels), or triggering action function-
alities from existing business object implementations like EJBs in ECA rules. Addi-
tionally, it supports clause sets to ground rules on data stored in external databases. 
This enables integrating facts from external databases (e.g. a data warehouse) via 
highly optimized query languages such as SQL into rule executions. Because we are 

                                                           
4  To avoid backward-reasoning loops in the inference algorithms 
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using well understood and sound logic formalism and implement them on the basis of 
horn logic our logic framework stays computational tractable and efficient although it 
provides rich expressiveness. 

In contrast to procedural programming approaches where the control flow must be 
completely implemented, the logic based rule approach allows a more compact repre-
sentation of SLAs. Additionally, dynamic reaction on external events with ECA rules 
and temporal conclusions about their effects on the contract state, e.g. on rights, obli-
gations or violations are enabled by computational models like the Event Calculus. A 
static procedural code representing this type of temporal event based logic would 
have been much more cumbersome to implement and maintain. Other examples are 
graduated rules e.g. graduated penalty rules for missing certain availability levels, 
dynamic rules, e.g. to adapt to special situations or complex dependencies between 
rules. From these examples it is easy to see why the declarative style of logic pro-
gramming can be superior to pure procedural languages in situations when flexibility 
and code economy are required to represent business logic which is likely to change 
over time. 

5   Conclusion and Outlook 
In this paper we have describe a rule based approach to SLA representation and man-
agement. We have summarized the requirements on an adequate representation lan-
guage and evolved our ContractLog framework on the basis of horn rules and meta 
programming techniques to solve this needs. In contrast to conventional pure proce-
dural programming approaches our logic based approach simplifies maintenance, 
management and execution of SLA rules and allows easy combination and revision of 
rule sets to build sophisticated and graduated contract agreements, which are more 
suitable in a dynamic service oriented environment than the actually applied, simpli-
fied rules and the less adaptable procedural management tools. However, real usage 
of a representation language which is usable by others than its inventors immediately 
makes rigorous demands on the syntax: e.g. comprehension, readability and usability 
of the language by users, compact representation, exchangeability with other formats, 
means for serialization, tool support in writing and parsing rules etc. and in particular 
a declarative syntax. We try to address these requirements with our superimposed 
declarative Rule Based SLA language RBSLA [7], which is implemented on top of 
ContractLog. It adapts and extends RuleML [16] to the needs of the SLA domain. 
The main additional features we introduce are: (1) definitions and terms defining the 
meaning of the concepts used in SLAs by referencing on external contract vocabular-
ies and semantic ontologies (RDFS/OWL); (2) ECA rules including monitoring 
schedules/intervals, active event monitoring/measurement functions and actively 
triggered, executable actions; (3) deontic personalized contract norms with conse-
quential violations and penalties triggered by time based events; (4) integration of 
external data and system/object functionalities via procedural attachments, clause sets 
and typed constants and variables (Java or RDFS/OWL); (5) modularization of con-
tract structures and rule sets including defeasible rules and priority relations; This 
includes a transformation implementation which maps the declarative RBSLA into 
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executable ContractLog rules (Prova/Prolog syntax) and additionally performs valida-
tion, optimization and refactoring of the declarative rule sets during this process. 
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