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Abstract. Rule-based policy and contract systems have rarely been stud-
ied in terms of their software engineering properties. This is a serious omis-
sion, because in rule-based policy or contract representation languages rules
are being used as a declarative programming language to formalize real-
world decision logic and create IS production systems upon. This paper
adopts a successful SE methodology, namely test driven development, and
discusses how it can be adapted to verification, validation and integrity test-
ing (V&V&I) of policy and contract specifications. Since, the test-driven ap-
proach focuses on the behavioral aspects and the drawn conclusions instead
of the structure of the rule base and the causes of faults, it is independent
of the complexity of the rules and the system under test and thus much
easier to use and understand for the rule engineer and the user.
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1 Test-driven V&V for Rule-based Policies and Contracts

Increasing interest in industry and academia in higher-level policy and contract lan-
guages has led to much recent development. Different representation approaches have
been propose, reaching from general syntactic XML markup languages such as WS-
Policy, WS-Agreement or WSLA to semantically-rich (ontology based) policy repre-
sentation languages such as Rei, KAoS or Ponder and highly expressive rule based
contract languages such as the RBSLA language [2] or the SweetRules approach. In
this paper we adopt the rule-based view on expressive high-level policy and contract
languages for representing e.g. SLAs, business policies and other contractual, business-
oriented decision logic. In particular, we focus on logic programming techniques. Logic
programming has been one of the most successful representatives of declarative pro-
gramming. It is based on solid and well-understood theoretical concepts and has been
proven to be very useful for rapid prototyping and describing problems on a high ab-
straction level. The domain of contractual agreements, high-level policies and business
rules’ decision logic appears to be highly suitable to logic programming. For instance,
IT service providers need to manage and possibly interchange large amounts of SLAs /
policies / business rules which describe behavioral, contractual or business logic using
different rule types to describe e.g. complex conditional decision logic (derivation rules),
reactive or even proactive behavior (ECA rules), normative statements and legal rules
(deontic rules), integrity definitions (integrity constraints) or defaults, rule preferences
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and exceptions (non-monotonic defeasible rules). Such rule types have been shown to
be adequately represented and formalized as logic programs (LPs) - see the Contract-
Log KR [1] developed in the RBSLA project [3]. However, the domain imposes some
specific needs on the engineering and life-cycle management of formalized policy / con-
tract specifications: The policy rules must be necessarily modelled evolutionary, in a
close collaboration between domain experts, rule engineers and practitioners and the
statements are not of static nature and need to be continuously adapted to changing
needs. The future growth of policies or contract specifications, where rules are often
managed in a distributed way and are interchanged between domain boundaries, will
be seriously obstructed if developers and providers do not firmly face the problem of
quality, predictability, reliability and usability also w.r.t. understandability of the re-
sults produced by their rule-based policy/contract systems and programs. Furthermore,
the derived conclusions and results need to be highly reliable and traceable to count
even in the legal sense. This amounts for verification, validation and integrity testing
(V&V&I) techniques, which are much simpler than the rule based specifications itself,
but nevertheless adequate (expressive enough) to approximate their intended seman-
tics, determine the reliability of the produced results, ensure the correct execution in
a target inference environment and safeguard the life cycle of possibly distributed and
unitized rules in rule-based policy projects which are likely to change frequently.

Different approaches and methodologies to V&V of rule-based systems have been
proposed in the literature such as model checking, code inspection or structural debug-
ging. Simple operational debugging approaches which instrument the policy/contract
rules and explore its execution trace place a huge cognitive load on the user, who
needs to analyze each step of the conclusion process and needs to understand the
structure of the rule system under test. On the other hand, typical heavy-weight V&V
methodologies in Software Engineering (SE) such as waterfall-based approaches are
often not suitable for rule-based systems, because they induce high costs of change
and do not facilitate evolutionary modelling of rule-based policies with collaborations
of different roles such as domain experts, system developers and knowledge engineers.
Moreover, they can not check the dynamic behaviors and the interaction between dy-
namically updated and interchanged policies/contracts and target execution environ-
ments at runtime. Model-checking techniques and methods based e.g. on algebraic-,
graph- or Petri-net-based interpretations are computationally very costly, inapplicable
for expressive policy/contract rule languages and presuppose a deep understanding of
both domains, i.e. of the the testing language / models and of of the rule language and
the rule inferences. Although test-driven Extreme Programming (XP) techniques and
similar approaches to agile SE have been very successful in recent years and are widely
used among mainstream software developers, its values, principles and practices have
not been transferred into the rule-based policy and contract representation commu-
nity yet. In this paper, we adapt a successful methodology of XP, namely test cases
(TCs), to verify and validate correctness, reliability and adequacy of rule-based policy
and contract specifications. It is well understood in the SE community that test-driven
development improves the quality and predictability of software releases and we argue
that TCs and integrity constraints (ICs) also have a huge potential to be a successful
tool for declarative V&V of rule-based policy and contract systems. TCs in combina-
tion with other SE methodologies such as test coverage measurement which is used to
quantify the completeness of TCs as a part of the feedback loop in the development
process and rule base refinements (a.k.a. refactorings) [17] which optimize the existing
rule code, e.g. remove inconsistencies, redundancy or missing knowledge without break-
ing its functionality, qualify for typically frequently changing requirements and models
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of rule-based policies and contracts (e.g. SLAs). Due to their inherent simplicity TCs,
which provide an abstracted black-box view on the rules, better support different roles
which are involved during the engineering process and give policy engineers an expres-
sive but nevertheless easy to use testing language. In open distributed environment
TCs can be used to ensure correct execution of interchanged specifications in target
execution environments by validating the interchanged rules with the attached TCs.

The further paper is structured as follows: In section 2 we review basics in V&V
research. In section 3 we define syntax and semantics of TCs and ICs for LP based
policy/contract specifications. In section 4 we introduce a declarative test coverage
measure which draws on inductive logic programming techniques. In section 5 we dis-
cuss TCs for V&V of rule engines and rule interchange. In section 6 we describe our
reference implementation in the ContractLog KR and integrate our approach into an
existing SE test framework (JUnit) and a rule markup language (RuleML). In section
7 we discuss related work and conclude this paper with a discussion of the test-drive
V&V&I approach for rule-based policies and contracts.

2 Basics in Rule-based V&V Research

V&V of rule-based policy/contract specifications is vital to assure that the LP used
to formalize the policy/contract rules performs the tasks which it was designed for.
Accordingly, the term V&V is used as a rough synonym for ”evaluation and testing”.
Both processes guarantee that the LP provides the intended answer, but also imply
other goals such as to assure the security or maintenance and service of the rule-based
system. There are many definitions of V&V in the SE literature. In the context of V&V
of rule-based policies/contracts we use the following:
1. Verification ensures the logical correctness of a LP. Akin to traditional SE a distinction between

structurally flawed or logically flawed rule bases can be made with structural checks for redundancy

or relevance and semantic checks for consistency, soundness and completeness.

2. As discussed by Gonzales [4] validation is concerned with the correctness of a rule-based system

in a particular environment/situation and domain.

During runtime certain parts of the rule based decision logic should be static and not
subjected to changes or it must be assured that updates do not change this part of the
intended behavior of the policy/contract. A common way to represent such constraints
are ICs. Roughly, if validation is interpreted as: ”Are we building the right product?”
and verification as: ”Are we building the product right?” then integrity might be loosely
defined as: ”Are we keeping the product right?”, leading to the new pattern: V&V&I.
Hence, ICs are a way to formulate consistency (or inconsistency) criteria of a dynami-
cally updated knowledge base (KB). Another distinction which can be made is between
errors and anomalies:
- Errors represent problems which directly effect the execution of rules. The simplest source of errors

are typographical mistakes which can be solved by a verifying parser. More complex problems arise

in case of large rule bases incorporating several people during design and maintenance and in case of

the dynamic alteration of the rule base via adding, changing or refining the knowledge which might

easily lead to incompleteness and contradictions.

- Anomalies are considered as symptoms of genuine errors, i.e. they man not necessarily represent

problems in themselves.

Much work has been done to establish and classify the nature of errors and anomalies
that may be present in rule bases, see e.g. the taxonomy of anomalies from Preece and
Shinghal [5]. We briefly review the notions that are commonly used in the literature
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[6, 7], which range from semantic checks for consistency and completeness to structural
checks for redundancy, relevance and reachability:
1. Consistency: No conflicting conclusions can be made from a set of valid input data. The common

definition of consistency is that two rules or inferences are inconsistent if they succeed at the same

knowledge state, but have conflicting results. Several special cases of inconsistent rules are consid-

ered in literature such as:

- self-contradicting rules and self-contradicting rule chains, e.g. p ∧ q → ¬p

- contradicting rules and contradicting rule chains, e.g. p ∧ q → s and p ∧ q → ¬s

Note that the first two cases of self-contradiction are not consistent in a semantic sense and can

equally be seen as redundant rules, since they can be never concluded.

2. Correctness/Soundness: No invalid conclusions can be inferred from valid input data, i.e. a rule

base is correct when it holds for any complete model M , that the inferred output from valid inputs

via the rule base are true in M . This is closely related to soundness which checks that the intended

outputs indeed follows from the valid input. Note, that in case of partial models with only partial in-

formation this means that all possible partial models need to be verified instead of only the complete

models. However, for monotonic inferences these notions coincide and a rule base which is sound is

also consistent.

3. Completeness: No valid input information fails to produce the intended output conclusions, i.e.

completeness relates to gaps (incomplete knowledge) in the knowledge base. The iterative process

of building large rule bases where rules are tested, added, changed and refined obviously can leave

gaps such as missing rules in the knowledge base. This usually results in intended derivations which

are not possible. Typical sources of incompleteness are missing facts or rules which prevent intended

conclusions to be drawn. But there are also other sources. A KB having too many rules and too many

input facts negatively influences performance and may lead to incompleteness due to termination

problems or memory overflows. Hence, superfluous rules and non-terminating rule chains can be also

considered as completeness problems, e.g.:

- Unused rules and facts, which are never used in any rule/query derivation (backward reasoning)

or which are unreachable or dead-ends (forward reasoning).

- Redundant rules such as identical rules or rule chains, e.g. p→ q and p→ q.

- Subsumed rules, a special case of redundant rules, where two rules have the same rule head but

one rule contains more prerequisites (conditions) in the body, e.g. p ∧ q → r and p→ r.

- Self-contradicting rules, such as p ∧ q ∧ ¬p→ r or simply p→ ¬p, which can never succeed.

- Loops in rules of rule chains, e.g. p ∧ q → q or tautologies such as p→ p.

3 Homogeneous Integration of Test Cases and Integrity
Constraints into Logic Programs

The relevance of V&V of rule bases and LPs has been recognized in the past (see section
2 and 7) and most recently also in the context of policy explanations [8]. The majority
of these approaches rely on debugging the derivation trees and giving explanations (e.g.
via spy and trace commands) or transforming the program into other more abstract
representation structures such as graphs, petri nets or algebraic structures which are
then analyzed for inconsistencies. Typically, the definition of an inconsistency, error
or anomaly (see section 2) is then given in the language used for analyzing the LP,
i.e. the V&V information is not expressed in the same representation language as the
rules. This is in strong contrast to the way people would like to engineer, manage and
maintain rule-based policies and systems. Different skills for writing the formalized
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specifications and for analyzing them are needed as well as different systems for rea-
soning with rules and for V&V. Moreover, the used V&V methodologies (e.g. model
checking or graph theory) are typically much more complicated than the rule-based
programs. In fact, it turns out that even writing rule-based systems that are useful
in practice is already of significant complexity, e.g. due to non-monotonic features or
different negations, and that simple methods are needed to safeguard the engineering
and maintenance process w.r.t. V&V&I. Therefore, what policy engineers and practi-
tioners would like to have is an ”easy-to-use” approach that allows representing rules
and tests in the same homogeneous representation language, so that they can be en-
gineered, executed, maintained and interchanged together using the same underlying
syntax, semantics and execution/inference environment. In this section we elaborate on
this homogeneous integration approach based on the common ”denominator”: extended
logic programming.

In the following we use the standard LP notation with an ISO Prolog related
scripting syntax called Prova [9] and we assume that the reader is familiar with logic
programming techniques [10]. For the semantics of the KB we adapt a rather gen-
eral definition [11] of LP semantics, because our test-driven approach is intended to
be general and applicable to several logic classes / rule languages (e.g. propositional,
DataLog, normal, extended) in order to fulfill the different KR needs of particular pol-
icy/contract projects (w.r.t expressiveness and computational complexity which are in
a trade-off relation to each other). In particular, as we will show in section 5, TCs can
be also used to verify the possible unknown semantics of a target inference service in
a open environment such as the (Semantic) Web and test the correct execution of an
interchanged policy/contract in the target environment.
- A semantics SEM(P ) of a LP P is proof-theoretically defined as a set of literals that are

derivable from P using a particular derivation mechanisms, such as linear SLD(NF)-resolution

variants with negation-as-finite-failure rule or non-linear tabling approaches such as SLG reso-

lution. Model-theoretically, a semantics SEM(P ) of a program P is a subset of all models of P :

MOD(P ). In this paper in most cases a subset of the (3-valued) Herbrand-models of the language

of LP : SEM(P ) ⊆MOD
HerbLP

(P ). Associated to SEM(P) are two entailment relations:

1. sceptical, where the set of all atoms or default atoms are true in all models of SEM(P)

2. credulous, where the set of all atoms or default atoms are true in at least one model of SEM(P)

- A semantics SEM ′ extends a semantics SEM denoted by SEM ′ ≥ SEM, if for all programs

P and all atoms l the following holds: SEM(P ) |= l ⇒ SEM ′(P ) |= l, i.e. all atoms derivable

from SEM with respect to P are also derivable from SEM ′, but SEM ′ derives more true or false

atoms than SEM. The semantics SEM ′ is defined for a class of programs that strictly includes

the class of programs with the semantics SEM. SEM ′ coincides with SEM for all programs of

the class of programs for which SEM is defined.

In our ContractLog reference implementation we mainly adopt the sceptical view-
point on extended LPs and apply an extended linear SLDNF variant as procedural
semantics which has been extended with explicit negation, goal memoization and loop
prevention to overcome typical restrictions of standard SLDNF and compute WFS (see
ContractLog inference engine).

The general idea of TCs in SE is to predefine the intended output of a program
or method and compare the intended results with the derived results. If both match,
the TC is said to capture the intended behavior of the program/method. Although
there is no 100% guarantee that the TCs defined for V&V of a program exclude every
unintended results of the program, they are an easy way to approximate correctness
and other SE-related quality goals (in particular when the TCs and the program are
refined in an evolutionary, iterative process with a feedback loop). In logic programming
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we think of a LP as formalizing our knowledge about the world and how the world
behaves. The world is defined by a set of models. The rules in the LP constrain the
set of possible models to the set of models which satisfy the rules w.r.t the current KB
(actual knowledge state). A query Q to the LP is typically a conjunction of literals
(positive or negative atoms) G1 ∧ .. ∧Gn, where the literals Gi may contain variables.
Asking a query Q to the LP then means asking for all possible substitutions θ of the
variables in Q such that Qθ logically follows from the LP P . The substitution set θ
is said to be the answer to the query, i.e. it is the output of the program P . Hence,
following the idea of TCs, for V&V of a LP P we need to predefine the intended outputs
of P as a set of (test) queries to P and compare it with the actual results / answers
derived from P by asking these test queries to P . Obviously, the set of possible models
of a program might be quite large (even if many constraining rules exist), e.g. because
of a large fact base or infinite functions. As a result the set of test queries needed to test
the program and V&V of the actual models of P would be in worst case also infinite.
However, we claim that most of the time correctness of a set of rules can be assured
by testing a much smaller subset of these models. In particular, as we will see in the
next section, in order to be an adequate cover for a LP the tests need to be only a
least general instantiation (specialization) of the rules’ terms (arguments) which fully
investigates and tests all rules in P . This supports our second claim, that V&V of LPs
with TC can be almost ever done in reasonable time, due to the fact that the typical
test query is a ground query (without variables) which has a small search space (as
compared to queries with free variables) and only proves existence of at least one model
satisfying it. In analogy to TCs in SE we define a TC as TC := {A, T} for a LP P to
consists of:
1. a set of possibly empty input assertions ”A” being the set of temporarily asserted test input

facts (and additionally meta test rules - see section 5) defined over the alphabet ”L”. The assertions

are used to temporarily setup the test environment. They can be e.g. used to define test facts,

result values of (external) functions called by procedural attachments, events and actions for testing

reactive rules or additional meta test rules.

2. a set of one ore more tests T . Each test Ti, i > 0 consists of:

- a test query Q with goal literals of the form q(t1, ..tn)?, where Q ∈ rule(P ) and rule(P ) is the

set of literals in the head of rules (since only rules need to be tested)

- a result R being either a positive ”true”, negative ”false” or ”unknown” label.

- an intended answer set θ of expected variable bindings for the variables of the test query Q:

θ := {X1, ..Xn} where each Xi is a set of variable bindings {Xi/a1, .., Xi/an}. For ground test

queries θ := ∅.
We write a TC T as follows: T = A ∪ {Q => R : θ}. If a TC has no assertions
we simply write T = {Q => R : θ}. For instance, a TC T1 = {p(X) => true :
{X/a, X/b, X/b}, q(Y ) => false} defines a TC T1 with two test queries p(X)? and
q(Y )?. The query p(X)? should succeed and return three answers a,b and c for the free
variable X. The query q(Y ) should fail. In case we are only interested in the existential
success of a test query we shorten the notation of a TC to T = {Q => R}.

To formulate runtime consistency criteria w.r.t. conflicts which might arise due to
knowledge updates, e.g. adding rules, we apply ICs:
An IC on a LP is defined as a set of conditions that the constrained KB must satisfy, in order

to be considered as a consistent model of the intended (real-world domain-specific) model. Sat-

isfaction of an IC is the fulfillment to the conditions imposed by the constraint and violation of

an IC is the fact of not giving strict fulfillment to the conditions imposed by the constraint, i.e.

satisfaction resp. violation on a program (LP) P w.r.t the set of IC := {ic1, ..ici} defined in P

is the satisfaction of each ici ∈ IC at each KB state P ′ := P ∪Mi ⇒ P ∪Mi+1 with M0 = ∅,
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where Mi is an arbitrary knowledge update adding,removing or changing rules or facts to the

dynamically extended or reduced KB.

Accordingly, ICs are closely related to our notion of TCs for LPs. In fact, TCs can be
seen as more expressive ICs. From a syntactical perspective we distinguish ICs from
TCs, since in our (ContractLog) approach we typically represent and manage TCs as
stand-alone LP scripts (module files) which are imported to the KB, whereas ICs are
defined as LP functions. Both, internal ICs or external TCs can be used to define
conditions which denote a logic or application specific conflict. ICs in ContractLog are
defined as a n-ary function integrity(< operator >, < conditions >). We distinguish
four types of ICs:
- Not-constraints which express that none of the stated conclusions should be drawn.

- Xor-constraints which express that the stated conclusions should not be drawn at the same time.

- Or-constraints which express that at least one of the stated conclusions must be drawn.

- And-constraints which express that all of the stated conclusion must draw.

ICs are defined as constraints on the set of possible models and therefore describe the
model(s) which should be considered as strictly conflicting. Model theoretically we at-
tribute a 2-valued truth value (true/false) to an IC and use the defined set of constraints
(literals) in an IC as a goal on the program P , by meta interpretation (proof-theoretic
semantics) of the integrity functions. In short, the truth of an IC in a finite interpreta-
tion I is determined by running the goal GIC defined by the IC on the clauses in P or
more precisely on the actual knowledge state of Pi in the KB. If the GIC is satisfied,
i.e. there exists at least one model for the sentence formed by the GIC : Pi |= GIC , the
IC is violated and P is proven to be in an inconsistent state w.r.t. IC: IC is violated
resp. Pi violates integrity iff for any interpretation I, I |= Pi → I |= GIC . We define
the following interpretation for ICs:
And and(C1, .., Cn): Pi |= (notC1 ∨ .. ∨ notCn) if exists i ∈ 1, .., n, Pi |= not Ci

Not: not(C1, .., Cn): Pi |= (C1 ∨ .. ∨ Cn) if exists i ∈ 1, .., n, Pi |= Ci

Or: or(C1, .., Cn): Pi |= (notC1 ∧ .. ∧ notCn if for all i ∈ 1, .., n, Pi |= not Ci

Xor: xor(C1, .., Cn): Pi |= (Cj ∧ Ck) if exists j ∈ 1, .., n, Pi |= Cj and exists k ∈ 1, .., n, Pi |= Ck

with Cj 6= Ck and Cj ∈ C, Ck ∈ C

C := {C1, .., Cn} are positive or negative n-ary atoms which might contain variables;
not is used in the usual sense of default negation, i.e. if a constraint literal can not be
proven true, it is assumed to be false. If there exists a model for a IC goal (as defined
above), i.e. the ”integrity test goal” is satisfied Pi |= GIC , the IC is assigned true and
hence integrity is violated in the actual knowledge/program state Pi.

4 Declarative Test Coverage Measurement

Test coverage is an essential part of the feedback loop in the test-driven engineering
process. The coverage feedback highlights aspects of the formalized policy/contract
specification which may not be adequately tested and which require additional testing.
This loop will continue until coverage of the intended models of the formalized policy
specification meets an adequate approximation level by the TC resp. test suites (TS)
which bundle several TCs. Moreover, test coverage measurements helps to avoid atro-
phy of TSs when the rule-based specifications are evolutionary extended. Measuring
coverage helps to keep the tests up to a required level if new rules are added or exist-
ing rules are removed/changed. However, conventional testing methods for imperative
programming languages rely on the control flow graph as an abstract model of the pro-
gram or the explicitly defined data flow and use coverage measures such as branch or
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path coverage. In contrast, the proof-theoretic semantics of LPs is based on resolution
with unification and backtracking, where no explicit control flow exists and goals are
used in a refutation attempt to specialize the rules in the declarative LP by unifying
them with the rule heads. Accordingly, building upon this central concept of unifica-
tion a test covers a logic program P , if the test queries (goals) lead to a least general
specialization of each rule in P , such that the full scope of terms (arguments) of each
literal in each rule is investigated by the set of test queries.
Inductively deriving general information from specific knowledge is a task which is
approached by inductive logic programming (ILP) techniques which allow computing
the least general generalization (lgg), i.e. the most specific clause (e.g. w.r.t. theta
subsumption) covering two input clauses. A lgg is the generalization that keeps an
generalized term t (or clause) as special as possible so that every other generalization
would increase the number of possible instances of t in comparison to the possible
instances of the lgg. Efficient algorithms based on syntactical anti-unification with θ-
subsumption ordering for the computation of the (relative) lgg(s) exist and several
implementations have been proposed in ILP systems such as GOLEM, or FOIL. θ-
subsumption introduces a syntactic notion of generality: A rule (clause) r (resp. a term
t) θ-subsumes another rule r′, if there exists a substitution θ, such that r ⊆ r′, i.e. a
rule r is as least as general as the rule r′ (r ≤ r′), if r θ-subsumes r′ resp. is more
general than r′ (r < r′) if r ≤ r′ and r′ � r. (see e.g. [14]) In order to determine the
level of coverage the specializations of the rules in the LP under test are computed via
specializing the rules with the test queries by standard unification. Then via general-
izing these specializations under θ-subsumption ordering, i.e. computing the lggs of all
successful specializations, a reconstruction of the original LP is attempted. The number
of successful ”recoverings” then give the level of test coverage, i.e. the level determines
those statements (rules) in a LP that have been executed/investigated through a test
run and those which have not. In particular, if the complete LP can be reconstructed
via generalization of the specialization then the test fully covers the LP. Formally we
express this as follows:
Let T be a test with a set of test queries T := {Q1?, .., Qn?} for a program P , then T
is a cover for a rule ri ∈ P , if the lgg(r′

i) ' ri under θ − subsumption, where ' is an
equivalence relation denoting variants of clauses/terms and the r′

i are the specializa-
tions of ri by a query Qi ∈ T . It is a cover for a program P , if T is a cover for each
rule ri ∈ P . With this definition it can be determined whether a test covers a LP or
not. The coverage measure for a LP P is then given by the number of covered rules ri

divided by the number k of all rules in P :

coverP (T ) : −
Pk

i=1 coverri
(T )

k

For instance, consider the following simplified business policy P :

discount(Customer, 10%) :- gold(Customer).
gold(Customer) :- spending(Customer, Value) , Value > 3000.
spending(’Moor’,5000). spending(’Do’,4000). %facts

Let T = {discount(′Moor′, 10%)? => true, discount(′Do′, 10%)? => true be a test with two test
queries. The set of directly derived specializations by applying this tests on P are:

discount(’Moor’,10%) :- gold(’Moor’).
discount(’Do’,10%) :- gold(’Do’).

The computed lggs of this specializations are:

discount(Customer,10%) :- gold(Customer).



V&V&I of Rule Based Policies, Contracts, SLAs 9

Accordingly, the coverage of P is 50%. We extend T with the additional test goals: {gold(′Moor′)? =>
true, gold(′Do′)? => true)?}. This leads to two new specializations:

gold(’Moor’) :- spending(’Moor’,Value) , Value > 3000.
gold(’Do’) :- spending(’Do’,Value) , Value > 3000.

The additional lggs are then:

gold(Customer) :- spending(Customer, Value) , Value > 3000.

T now covers P , i.e. coverage = 100%.

The coverage measure determines how much of the information represented by the
rules is already investigated by the actual tests. The actual lggs give feedback how
to extend the set of test goals in order to increase the coverage level. Moreover, re-
peatedly measuring the test coverage each time when the rule base becomes updated
(e.g. when new rules are added) keeps the test suites (set of TCs) up to acceptable
testing standards and one can be confident that there will be only minimal problems
during runtime of the LP because the rules do not only pass their tests but they are
also well tested. In contrast to other computations of the lggs such as implication (i.e.
a stronger ordering relationship), which becomes undecidable if functions are used, θ-
subsumption has nice computational properties and it works for simple terms as well
as for complex terms with or without negation, e.g. p() : −q(f(a)) is a specialization
of p : −q(X). Although it must be noted that the resulting clause under generalization
with θ-subsumption ordering may turn out to be redundant, i.e. it is possible find an
equivalent one which is described more shortly, this redundancy can be reduced and
since we are only generalizing the specializations on the top level this reduction is com-
putationally adequate. Thus, θ-subsumption and least general generalization qualify to
be the right framework of generality in the application of our test coverage notion.

Although, the defined coverage measure is based on the central concept of unifi-
cation and uses ILP techniques for generalization of the derived specializations of the
rule base, it is worth noting, that the measure might be applied also in the context
of forward-directed reactive rules such as ECA rules or production rules. There are
several approaches in the active database domain which transform active rules into LP
derivation rules, in order to exploit the formal declarative semantics of logic programs
to overcome confluence and termination problems of active rule execution sequences,
where the actions are input events of further active rules. [24–26] For such transformed
declarative rule bases consisting of LP derivation rules test cases can be written and
the coverage can be computed as described above. The combination of deductive and
active rules has been also investigated in different approaches mainly based on the
simulation of active rules by means of deductive rules. [27–29] Moreover, there are
approaches which directly build reactive rules on top of LP derivation rules such as
the Event Condition Action Logic Programming language (ECA-LP) which enables a
homogeneous representation of ECA rules and derivation rules. [33, 34] Closely related
are also logical update languages such as transaction logics and in particular serial
Horn programs, where the serial Horn rule body is a sequential execution of actions in
combination with standard Horn pre-/post conditions. [30] These serial rules can be
processed top-down or bottom-up and hence are closely related to the production rules
style of condition → update action. This partial relation between backward reasoning
LP derivation rules and forward reasoning production rules which enables transforma-
tions of production rule bases into logic programs has been also shown for a subclass of
production rules, the stratified production rules. Hence, these class of production rules
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also qualifies for our goal-driven testing approach and unification based test coverage
measure. [32, 31]

5 Test-driven V&V of Rule Engines and Rule Interchange

Typical rule-based contracts/policies are managed and maintained in a distributed en-
vironment where the rules and data is interchanged over domain boundaries using more
or less standardized rule markup interchange formats, e.g. RuleML, SWRL, RBSLA,
RIF. The interchanged rules need to be interpreted and executed correctly in the target
inference engine which might be provided as an open (Web) service by a third-party
provider or a standardization body such as OMG or W3C (see [15]). Obviously, the
correct execution of the interchanged LP depends on the semantics of both, the LP
and the the inference engine (IE). TCs, which are interchanged together with the LP,
can be used to test whether the LP still behaves as intended in the target environment.

To address this issues the IE, the interchanged LP and the provided TCs must reveal
their semantics, e.g. by use of explicit meta annotations based on a common vocabulary
such as a (Semantic Web) ontology which classifies semantics such as STABLE (stable
model), WFS (well-founded) and relates them to classes of LPs such as stratified LPs,
normal LPs, extended LPs. The ontology can then be used to provide additional meta
information about the semantics and logic class of the interchanged rules and TCs
and find appropriate IEs to correctly and efficiently interpret and execute the LP,
e.g. (1) via configuring the target rule engine for a particular semantics in case it
supports different ones (see e.g. the configurable ContractLog IE), (2) by executing
an applicable variant of several interchanged semantics alternatives of the LP or (3)
by automatic transformation approaches which transform the interchange LP into an
executable LP. However, we do not believe that each rule engine vendor will annotate
its implementation with such meta information, even when there is an official standard
Semantic Web ontology on hand (e.g. released by OMG or W3C). Therefore, means to
automatically determine the supported semantics of IEs are needed. As we will show in
this section, TCs can be extended to meta test programs testing typical properties of
well-known semantics and by the combination of succeed and failed meta tests uniquely
determine the unknown semantics of the target environment.

A great variety of semantics for LPs and non-monotonic reasoning have been devel-
oped in the past decades. For an overview we relate to [11]. In general, there are three
ways to determine the semantics (and hence the IE) to be used for execution: (1) by
its complexity and expressiveness class (which are in a trade-off relation to each other),
(2) by its runtime performance or (3) by the semantic properties it should satisfy. A
generally accepted criteria as to why one semantics should be used over another does
not exists, but two main competing approaches, namely WFS and STABLE, have been
broadly accepted as declarative semantics for normal LPs.

For discussion of the worst case complexity and expressiveness of several classes
of LPs we refer to [16]. Based on these complexity results for different semantics and
expressive classes of LPs, which might be published in a machine interpretable format
(Semantic Web ontology) for automatic decision making, certain semantics might be
already excluded to be usable for a particular rule-based policy/contract application.
However, asymptotic worst-case results are not always appropriate to quantify perfor-
mance and scalability of a particular rule execution environment since implementation
specifics of an IE such as the use of inefficient recursions or memory-structures might
lead to low performance or memory overflows in practice. TCs can be used to measure
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the runtime performance and scalability for different outcomes of a rule set given a
certain test fact base as input. By this certain points of attention, e.g., long computa-
tions, loops or deeply nested derivation trees, can be identified and a refactoring of the
rule code (e.g. reordering rules, narrowing rules, deleting rules etc.) can be attempted
[17]. We call this dynamic testing in opposite to functional testing. Dynamic TCs with
maximum time values (time constraints) are defined as an extension to functional TCs
(see section 3): TC = A ∪ {Q => R : θ < MS}, where MS is a maximum time con-
straint for the test query Q. If the query was not successful within this time frame the
test is said to be failed. For instance, TCdyn : q(a)? => true < 1000ms succeeds iff the
test query succeeds and the answer is computed in less than 1000 milliseconds.

To define a meta ontology of semantics and LP classes (represented as an OWL
ontology - see [18]) which can be used to meta annotate the interchanged policy LPs,
the IEs and the TCs we draw on the general semantics classification theory developed
by J. Dix [12, 13]. Typical top-level LP classes are, e.g., definite LPs, stratified LPs,
normal LP, extended LPs, disjunctive LPs. Well-known semantics for these classes are
e.g., least and supported Herbrand models, 2 and 3-valued COMP, WFS, STABLE,
generalized WFS etc. Given the information to which class a particular LP belongs,
which is its intended semantics and which is the de facto semantics of the target IE, it
is straightforward to decide wether the LP can be executed by the IE or not. In short, a
LP can not be executed by an IE, if the IE derives less literals than the intended SEM
for which the LP was design for would do, i.e. SEM ′(IE) ≥ SEM(P ) or the semantics
implemented by the IE is not adequate for the program, i.e. SEM ′(IE) 6= SEM(P )
. This information can be give by meta annotations, e.g., class: defines the class of
the LP / IE; semantics: defines the semantics of the LP / IE; syntax: defines the rule
language syntax.

In the context of rule interchange with open, distributed IEs, which might be pro-
vided as public services, an important question is, wether the IE correctly implements
a semantics. Meta TCs can be used for V&V of the interchanged LP in the target en-
vironment and therefore establish trust to this service. Moreover, meta TCs checking
general properties of semantics can be also used to verify and determine the semantics
of the target IE even in case when it is unknown (not given by meta annotations).
Kraus et al. [19] and Dix [12, 13] proposed several weak and structural (strong) prop-
erties for arbitrary (non-monotonic) semantics, e.g.:

Strong Properties

- Cumulativity: If U ⊆ V ⊆ SEMscept
P (U), then SEMscept

P (U) = SEMscept
P (V ), where U and V

are are sets of atoms and SEMscept
P is an arbitrary sceptical semantics for the program P , i.e. if

a |∼ b then a |∼ c iff (a ∧ b) |∼ c.

- Rationality: If U ⊆ V, V ∩ {A : SEMscept
P (U) |= ¬A} = ∅, then SEMscept

P (U) ⊆ SEMscept
P (V ).

Weak Properties

- Elimination of Tautologies: If a rule a ← b ∧ not c with a ∩ b = ∅ is eliminated from a program

P , then the resulting program P ′ is semantically equivalent: SEM(P ) = SEM(P ′). a,b,c are sets

of atoms: P 7→ P ′ iff there is a rule H ← B ∈ P such that H ∈ B and P ′ = P \ {H ← b}
- Generalized Principle of Partial Evaluation (GPPE): If a rule a ← b ∧ not c, where b contains

an atom B, is replaced in a program P ′ by the n rules a ∪ (ai −B)← ((b−B) ∪ bi) ∧ not (c ∪ ci),

where ai ← bi ∧ not ci(i = 1, ..n) are all rules for which B ∈ ai, then SEM(P ) = SEM(P ′)

- Positive/Negative Reduction: If a rule a← b ∧ not c is replaced in a program P ′ by a← b ∧ not

(c−C) (C is an atom), where C appears in no rule head, or a rule a← b∧ not c is deleted from P ,

if there is a fact a′ in P such that a′ ⊆ c, then SEM(P ) = SEM(P ′):



12 Paschke, Adrian

1. Positive Reduction: P 7→ P ′ iff there is a rule H ← B ∈ P and a negative literal not B ∈ B such

that B 3 HEAD(P ) and P ′ = (P \ {H ← B}) ∪ {H ← (B \ {notB})}
2. Negative Reduction: P 7→ P ′ iff there is a rule H ← B ∈ P and a negative literal not B ∈ B such

that B ∈ FACT (P ) and P ′ = (P \ {H ← B})
- Elimination of Non-Minimal Rules / Subsumption: If a rule a ← b ∧ not c is deleted from a

program P if there is another rule a′ ← b′ ∧ not c′ such that a′ ⊆ a, b′ ⊆ b, c′ ⊆ c, where at least

one ⊆ is proper, then SEM(P ) = SEM(P ′): P 7→ P ′ iff there are rules H ← B and H ← B′ ∈ P

such that B ⊂ B′ and P ′ = P \ {H ← B′}
- Consistency: SEM(P ) = ∅ for all disjunctive LPs

- Independence: For every literal L, L is true in every M ∈ SEM(P ) iff L is true in every

M ∈ SEM(P ∪ P ′) provided that the language of P and P ′ are disjoint and L belongs to the

language of P

- Relevance: The truth value of a literal L with respect to a semantics SEM(P ), only depends on the

subprogram formed from the relevant rules of P (relevant(P )) with respect to L: SEM(P )(L) =

SEM(relevant(P, L))(L)

The basic idea to apply these properties for the V&V as well as for the automated
determination of the semantics of arbitrary LP rule inference environments is, to trans-
late known counter examples into meta TCs and apply them in the target IE. Such
counter examples which show that certain semantics do not satisfy one or more of the
general properties, have been discussed in literature. To demonstrate this approach we
will now give an examples derived from [12, 13]. For a more detailed discussion of this
meta test case approach and more examples see [18]:

Example: STABLE is not Cautious
P: a <- neg b P’: a <- neg b

b <- neg a b <- neg a
c <- neg c c <- neg c
c <- a c <- a

c
T:{a?=>true,c?=>true}

STABLE(P) has {a, neg b, c} as its only stable model and hence it derives ’a’ and ’c’, i.e.
’T’ succeeds. By adding the derived atom ’c’ we get another model for P’ {neg a, b, c}, i.e.
’a’ can no longer derived (i.e. ’T’ now fails) and cautious monotonicity is not satisfied.

Example: STABLE does not satisfy Relevance
P: a <- neg b P’: a <- neg b

c <- neg c
T:={a?=>true}

The unique stable model of ’P’ is {a}. If the rule ’c <- neg c’ is added, ’a’ is no longer
derivable because no stable model exists. Relevance is violated, because the truth value of
’a’ depends on atoms that are totaly unrelated with ’a’.

The first ”positive” meta TC is used to verify if the (unknown) semantics imple-
mented by the IE will provide the correct answers for this particular meta test program
P . The ”negative” TC P ′ is then used to evaluate if the semantics of the IE satisfies
the property under tests. Such sets of meta TCs provide us with a tool for determining
an ”adequate” semantics to be used for a particular rule-based policy/contract appli-
cation. Moreover, there are strong evidences that by taking all properties together an
arbitrary semantics might be uniquely determined by the set of satisfied and unsat-
isfied properties, i.e. via applying a meta TS consisting of adequate meta TCs with
typical counter examples for these properties in a IE, we can uniquely determine the
semantics of this IE. Table 1 (derived from [12, 13]) specifies for common semantics the
properties that they satisfy.
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The semantic principles described in this section are also very important in the context
of applying refactorings to LPs. In general, a refactoring to a rule base should optimize
the rule code without changing the semantics of the program. Removing tautologies
or non-minimal rules or applying positive/negative reductions are typically applied in
rule base refinements using refactorings [17] and the semantics equivalence relation
between the original and the refined program defined for this principles is therefore an
important prerequisite to safely apply a refactoring of this kind.

6 Integration into Testing Frameworks and RuleML

We have implemented the test drive approach in the ContractLog KR [18]. The Con-
tractLog KR [1] is an expressive and efficient KR framework developed in the RBSLA
project [3] and hosted at Sourceforge for the representation of contractual rules, poli-
cies and SLAs implementing several logical formalisms such as event logics, defeasible
logic, deontic logics, description logic programs in a homogeneous LP framework as
meta programs. TCs in the ContractLog KR are homogeneously integrated into LPs
and are written in an extended ISO Prolog related scripting syntax called Prova [9]. A
TC script consists of (1) a unique ID denoted by the function testcase(ID), (2) optional
input assertions such as input facts and test rules which are added temporarily to the
KB as partial modules by expressive ID-based update functions, (3) a positive meta
test rule defining the test queries and variable bindings testSuccess(Test Name,Optional
Message for Junit), (4) a negative test rule testFailure(Test Name,Message) and (5) a
runTest rule.

% testcase oid
testcase("./examples/tc1.test").
% assertions via ID-based updates adding one rule and two facts
:-solve(update("tc1.test","a(X):-b(X). b(1). b(2).")).
% positive test with success message for JUnit report
testSuccess("test1","succeeded"):- testcase(./examples/tc1.test),testQuery(a(1)).
% negative test with failure message for Junit report
testFailure("test1","can not derive a"):- not(testSuccess("test1",Message)).
% define the active tests - used by meta program
runTest("./examples/tc1.test"):-testSuccess("test 1",Message).

A TC can be temporarily loaded resp. removed to/from the KB for testing pur-
poses, using expressive ID-based update functions for dynamic LPs [18]. The TC meta
program implements various functions, e.g., to define positive and negative test queries
(testQuery, testNotQuery, testNegQuery), expected answer sets (variable bindings:
testResults) and quantifications on the expected number of result (testNumberOfRe-
sults). It also implements the functions to compute the clause/term specializations (spe-
cialize) and generalizations (generalize) as well as the test coverage (cover). To proof
integrity constraints we have implemented another LP meta program in the Contract-
Log KR with the main test axioms testIntegrity() and testIntegrity(Literal). The
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first integrity test is useful to verify (test logical integrity) and validate (test applica-
tion/domain integrity) the integrity of the actual KB against all ICs in the KB. The
second integrity test is useful to hypothetically test an intended knowledge update,
e.g. test wether a conclusion from a rule (the literal denotes the rule head) will lead to
violations of the ICs in the KB. Similar sets of test axioms are provided for temporarily
loading, executing and unloading TCs from external scripts at runtime.

To become widely accepted and useable to a broad community of policy engineers
and practitioners existing expertise and tools in traditional SE and flexible information
system (IS) development should be adapted to the declarative test-driven programming
approach. Well-known test frameworks like JUnit facilitate a tight integration of tests
into code and allow for automated testing and reporting in existing IDEs such as
eclipse via automated Ant tasks. The RBSLA/ ContractLog KR implements support
for JUnit based testing and test coverage reporting where TCs can be managed in
test suites (represented as LP scripts) and automatically run by a JUnit Ant task. The
ContractLog distribution comes with a set of functional-, regression-, performance- and
meta-TCs for the V&V of the inference implementations, semantics and meta programs
of the ContractLog KR.

To support distributed management and rule interchange we have integrated TCs
into RuleML (RuleML 0.9). The Rule Markup Language (RuleML) is a standardiza-
tion initiative with the goal of creating an open, producer-independent XML/RDF
based web language for rules. The Rule Based Service Level Agreement markup lan-
guage (RBSLA) [2] which has been developed for serialization of rule based contracts,
policies and SLAs comprises the TC layer together with several other layers extending
RuleML with expressive serialization constructs, e.g. defeasible rules, deontic norms,
temporal event logics, reactive ECA rules. The markup serialization syntax for TSs
/ TCs includes the following constructs given in EBNF notation, i.e. alternatives are
separated by vertical bars (|); zero to one occurrences are written in square brackets
([]) and zero to many occurrences in braces ({}).:

assertions ::= And
test ::= Test | Query
message ::= Ind | Var
TestSuite ::= [oid,] content | And
TestCase ::= [oid,] {test | Test,}, [assertions | And]
Test ::= [oid,] [message | Ind | Var,] test | Query, [answer | Substitutions]
Substitutions ::= {Var, Ind | Cterm}

Example:

<TestCase @semantics="semantics:STABLE" class="class:Propositional">
<Test @semantics="semantics:WFS" @label="true">

<Ind>Test 1</Ind><Ind>Test 1 failed</Ind>
<Query>

<And>
<Atom><Rel>p</Rel></Atom>
<Naf><Atom><Rel>q</Rel></Atom></Naf>

...
</TestCase>

The example shows a test case with the test: test1 : {p => true, not q => true}.

7 Related Work and Conclusion

V&V of KB systems and in particular rule based systems such as LPs with Prolog
interpreters have received much attention from the mid ’80s to the early ’90s, see e.g.
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[6]. Several V&V methods have been proposed, such as methods based on operational
debugging via instrumenting the rule base and exploring the execution trace, tabular
methods, which pairwise compare the rules of the rule base to detect relationships
among premises and conclusions, methods based on formal graph theory or Petri Nets
which translate the rules into graphs or Petri nets, methods based on declarative de-
bugging which build an abstract model of the LP and navigate through it or methods
based on algebraic interpretation which transform a KB into an algebraic structure,
e.g. a boolean algebra which is then used to verify the KB. As discussed in section 1
most of this approaches are inherently complex and are not suited for the policy resp.
contract domain. Much research has also been directed at the automated refinement
of rule bases [17], and on the automatic generation of test cases. There are only a few
attempts addressing test coverage measurement for test cases of backward-reasoning
rule based programs [22, 23].

Test cases for rule based policies are particular well-suited when policies/contracts
grow larger and more complex and are maintained, possibly distributed and inter-
changed, by different people. In this paper we have attempted to bridge the gap be-
tween the test-driven techniques developed in the Software Engineering community,
on one hand, and the declarative rule based programming approach for engineering
high level policies such as SLAs, on the other hand. We have elaborated on an ap-
proach using logic programming as a common basis and have extended this test-driven
approach with the notion of test coverage, integrity tests, functional, dynamic and
meta tests for the V&V&I of inference environments in a open distributed environ-
ment such as the (Semantic) Web. In addition to the homogeneous integration of test
cases into LP languages we have introduce a markup serialization as an extension to
RuleML which, e.g. facilitates rule interchange. We have implemented our approach
in the ContractLog KR [1] which is based on the Prova open-source rule environment
[9] and applied the agile test-driven values and practices successfully in the rule based
SLA (RBSLA) project for the development of complex, distributed SLAs [3]. Clearly,
test cases and test-driven development is not a replacement for good programming
practices and rule code review. However, the presence of test cases helps to safeguard
the life cycle of policy/contract rules, e.g. enabling V&V at design/development time
but also dynamic testing at runtime. In general, the test-driven approach follows the
well-known 80-20 rule, i.e. increasing the approximation level of the intended semantics
of a rule set (a.k.a. test coverage) by finding new adequate test cases becomes more
and more difficult with new tests delivering less and less incrementally. Hence, under
a cost-benefit perspective one has to make a break-even point and apply a not too
defensive development strategy to reach practical levels of rule engineering and testing
in larger rule based policy or contract projects.
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