
On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

On the Test-Driven Development 
and Validation of Business Rules

Jens Dietrich
Institute of Information Sciences & Technology
Massey University
J.B.Dietrich@massey.ac.nz

Adrian Paschke
Internet-based Information Systems
Technical University Munich
paschke@in.tum.de



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Setting the Scene

Software Development Lifecycle (SDLC) considered to be inappropriate for 
many projects – slow, difficult to manage change, if requirements are 
implemented they have changed. 

Different solutions proposed:

1. Agile SE (extreme programming + others): speed up development 
process , facilitate backtracking (redesign).
Emerging evidence that this might work, heavily supported by 
industry (in particular IBM).

2. Rule-Based Systems: develop tools to empower business users to 
change systems – avoiding the SDLC.
New wave of commercial tools (ILog, BlazeAdvistor, Jess, ..).

3. Can we combine 1. + 2. ?



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Extreme Programming

Introduced in the late 90ties Ken Beck, Ward Cunningham, Erich Gamma 
and others. 

Similar approaches such as feature driven development. Umbrella term: 
agile software engineering. 

Some XP ideas: 

1. Write executable test cases first. 

2. Little upfront design but evolving design. Permanent redesign supported 
by refactoring browsers. 

3. Build often, tool supported builds, extremely short iterations.



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Test Cases and Semantics

• The output of UML design is mainly a syntactical structure 
(classes and their APIs). 

• It is cumbersome to add semantics (descriptions, OCL). 
• Test cases can be used instead.

<<interface>>
Collection

void add(Object);
int size();

TestCase
Collection c = ..;
c.add(“object”);

assert(c.size()==1);

Vector
void add(Object) {..}

int size() {..} tests must succeed 
(e.g. JUnit)

must compile 
(e.g. javac)

Syntax Semantics



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

(Derivation) Rules

• Based on formal logic.

• We consider only derivation rules, but make no further assumptions about 
the logic (modalities, negation etc).



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Rules - Syntax

Language L, fact base FB, rule base RB.
RB �2LxL

FB RB A if there exists proof using rules in RB 
CnRB(X) = {A| X RB A} 

Cn usually monotonic.

Example: Resolution / unification as used in Prolog. 

Generalization : replace monotony be weaker conditions (e.g. cautious 
monotony)



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Semantics

M – class of models (e.g., true-false mappings, Kripke-models, 
PL models). 

�MxL

(m,A)� - “m is a model for A”

Mod(x) = {m�M | m A for all a �X}

Cn (X) = {A�L | Mod(X)�Mod({A})}

Consider only logics with Cn =CnRB (correctness and 
completeness) – our assumption is only logics with well 
understood meaning (semantics) and effective proof 
theory will be used to represent business rules. 

Generalization to nonmonotonic logics: reasoning based on 
subsets of models S(X) �Mod(X):

C (X) = {A�L |S(X)�Mod({A})}



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Difficulties with Rules

It is difficult to understand the impact of changing rules.

After adding/updating/deleting a rule r, is a fact A still valid (e.g., X RB A) ?

Problems:

• Order of rules might matter (priorities). 
• Rules may contain variables.
• Rules may contain nested terms (function symbols).
• Rules may contain different connectives (strong/weak 

negations, deontic modalities, etc). 
• Rule interaction: chaining, priorities, NAF.



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Queries as Test Cases

On the other hand, simple queries can be used before modifying rules to 
describe the desired state of the rule base. 

Simple queries means: 

They are ground (no variables).

They can be flat (no functions).

They do not contain negation.

Syntax: 

Q � true // positive test case – expected outcome is true

Q � false // negative test case – expected outcome is false 



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Example

V(c) – stands for “customer c uses a voucher for a purchase”

D(c) – stands for “customer c gets a special discount on a purchase”

E(c) – stands for “c is an employee”

G(c) – stands for “customer c is a Gold Customer”

FB = {G(a),E(b),G(c),V(c)} // fact base



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Example (ctd) - Refinement

TC1  {?D(a) � true, ?D(c) � true}

RB1 = {G(x) �D(x)}

MOD1 = FBU{D(a),D(c)},{} // initial partial model

// employees also qualify for discount

TC2  {?D(a) � true, ?D(c) � true, ?D(b) � true}

MOD2 = FBU{D(a),D(c),D(b)},{}

RB2 = {G(x) �'�[���E(x) �'�[�}



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Test Cases as Partial Models

Set of positive/negative test cases P,N and class of models M.

M(P,N) = {m�M | (m �$�IRU�HDFK�$�P) and (not m �$�IRU�HDFK�$�N) }

M(P,N) constraints possible models and is an approximation of the intended 
model. 

M

NP

possible models

negative test cases 

positive test cases

intended model



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Testcases and the Lifecycle of Rules

modelling:
update test 

cases
refactor rules

release 
rule base

execute test
casessuccess

failure

feedback

requirements



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

“Proof of Concept” Implementation

• Based on Mandarax

• Test cases are part of the knowledge base. 

• Test cases are persistent (e.g., XML).

• Test runner based on JUnit tool by K.Beck and E. Gamma.

• Supports test case lifecycle – assertions can be added before tests are 
executed and are removed after the tests. 



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Open Questions

• Assist user to find rules which are consistent with test cases.

• Measure the quality of test cases (similar to test coverage metrics used 
in SE). 

• Generalizing this approach to cover non-monotonic logics.



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Refactoring

• Tool supported redesign of rule sets. 

• Invariants: test cases (after refactoring, the test cases should still 
succeed). 

• Inspired by Refactoring Browsers (Smalltalk, RefactorIt) and Refactoring 
catalogues (M. Fowler: Refactoring). 

• Smells – structures which need to be improved.



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Smells

• Redundancy – There are redundant rules or rule fragments (for instance, 
shared subsets of prerequisites). 

• Inconsistency – Different, inconsistent results are supported by the same 
rule set.

• Incompleteness – Certain queries can not be answered by a rule set. 



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Refactoring: “Exception to the Rule”

InconsistencyAddresses:

..
A1,..,AN,�EXC B
..

Rule base after 
refactoring:

..
A1,..,AN B
..

Rule base before 
refactoring:

A rule R does not apply in a particular 
situation. This situation can be described 
by a fact EXC.

Description:
Exception to the RuleName:



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Refactoring: “Narrowing”

RedundancyAddresses:

..
A1,.., AN,AN+1.. A
A,AN+1..,.. B
A,AN+1..,.. C
....

Rule base after 
refactoring:

..
A1,..,AN,AN+1.. B
A1,..,AN,AN+1.. C
..

Rule base before 
refactoring:

Multiple rules share the same set of 
prerequisites.

Description:

NarrowingName:

Related to: Transformations of Logic Programs - Pettorossi, Proietti 96



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Refactoring: “Narrowing”

IncompletenessAddresses:

..
A1,..,AN,.. B
A’1,..,A’N,.. B

B
..

Rule base after refactoring:

..
A1,..,AN,.. B
A’1,..,A’N,.. B
..

Rule base before refactoring:

There are gaps in the rule set, i.e. there is no result 
for certain queries. A default rule is introduced to 
address this problem. 

Description:

Introducing a Default RuleName:



On the Test-Driven Development and Validation of Business Rules © Jens Dietrich, Adrian Paschke - 2005

Conclusion

Combination of Rule-based systems and principles from 
agile software engineering is promising.

TODOs: 

• generate rules from test cases

• apply to special logics 

• comprehensive list of refactorings

• Read the full paper: 

ISTA 2005 proceedings http://www.gi-ev.de/LNI/


